
+

Binary Trees

+
Trees – hierarchical data structure

+
Trees in CS are different

n  Nodes and links

Image Source:
http://www.dba-
oracle.com/images/
t_obje3.gif

Image Source: https://en.wikipedia.org/wiki/Ape

Tree Terms

A

C

G F

I J H

D E

B D is the
left child
of B

B is the
parent of
D and E

E is the
right child
of B

a subtree
with F as
the root

The dashed
line is a path

Root Level 1

Level 2

Level 3

Level 4

+
Tree Properties

n  each node has exactly one Parent

n  leaf nodes have no children

n  Level is distance from root:

n  Height is # of nodes in largest path from root to leaf

+
Binary Trees

n  Each node has at most two subtrees.

T is a Binary Tree if either one of the following is true:
Definition:
(1) T is empty.
(2) If T is not empty, its root has two subtrees
 TL and TR such that TL and TR are Binary Trees.

n  Let's look at some examples

+
Types of Binary Trees

n  Full	
 Binary	
 Tree	

All	
 nodes	
 have	
 two	
 children	
 or	
 0	
 (leaf	
 nodes)	

	

n  Perfect	
 Binary	
 Tree	

Full	
 Binary	
 Tree	
 of	
 height	
 n	
 and	
 2n	
 -­‐	
 1	
 nodes.	

	

n  Complete	
 Binary	
 Tree	

Perfect	
 through	
 level	
 n-­‐1	

Extra	
 leaf	
 nodes	
 at	
 level	
 n	
 are	
 all	
 on	
 leD	
 side	
 of	
 the	
 tree.	
 	

+ Linked List vs. Binary Tree

n  Double linked list
n  A set of nodes
n  Each node has

n  Data
n  Edge to previous node
n  Edge to next node

n  head (and optional tail)

n  Binary Tree
n  A set of nodes
n  Each node has

n  Data
n  Edge to left child
n  Edge to right child

n  A root node

3 7 12

3

7

12

LinkedList
__

Node head
Node tail

BinaryTree
__

Node root
Node
__

E data
Node prev
Node next

Node
__

E data
Node left
Node right

+
Expression Tree

n  Operator at root (internal) nodes

n  Operands at leaves (external) nodes

n  4 * 3

n  How would you draw:

n  (x + y) * (a + b) / c

*

4 3

*

4 3 +

4 3

(4 + 3) * 3

+
Binary Search Tree

n  Nodes have
n  At most 2 children

n  One comparable value v

n  Any left subtree has values less than v

n  Any right subtree has values greater than v

+
Binary Tree Traversal

n  How to make sure you "visit" each node only once.

n  "Visiting" a node means that you operate on or use the value
of the node.

n  To demonstrate traversal, the value is often printed.

n  Ordered Tree traversal:
n  Preorder: root, left, right

n  In-order: left, root, right

n  Post-order: left, right, root

n  Example on board.

+
Traversal algorithms

n  PreOrder(treeNode)
n  if TreeNode is empty

n  done

n  else

n  "visit" treeNode

n  PreOrder(treeNode.left)

n  PreOrder(treeNode.right)

n  Simlarly for inOrder and postOrder

n  Another example on board.

+
Other problems

n  min

n  max

n  remove

n  add

+
Min and Max?

1
2

3
4

5
6

7

7
6

5
3

2

7

3 11
175

64

9

108
2

1

Node
__

E data
Node left
Node right

+
Removal

n  Exercise: How do we remove 3, 8 and 17?
n  3 cases

7

3 11
175

64

9

108
2

1
25

Node
__

E data
Node left
Node right

+
Removal

7

3 11
255

64

9

10
2

1

n  Exercise: How do we delete?
n  1 difficult case

n  2 options

n  Predecessor

n  Successor

Node
__

E data
Node left
Node right

